Association Schemes of Quadratic Forms and Symmetric Bilinear Forms

نویسندگان

  • YANGXIAN WANG
  • CHUNSEN WANG
  • CHANGLI MA
چکیده

Let Xn and Yn be the sets of quadratic forms and symmetric bilinear forms on an n-dimensional vector space V over Fq , respectively. The orbits of GLn(Fq ) on Xn × Xn define an association scheme Qua(n, q). The orbits of GLn(Fq ) on Yn × Yn also define an association scheme Sym(n, q). Our main results are: Qua(n, q) and Sym(n, q) are formally dual. When q is odd, Qua(n, q) and Sym(n, q) are isomorphic; Qua(n, q) and Sym(n, q) are primitive and self-dual. Next we assume that q is even. Qua(n, q) is imprimitive; when (n, q) = (2, 2), all subschemes of Qua(n, q) are trivial, i.e., of class one, and the quotient scheme is isomorphic to Alt(n, q), the association scheme of alternating forms on V . The dual statements hold for Sym(n, q).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalues of association schemes of quadratic forms

The duality and primitivity of the association scheme Qua(n, q) of quadratic forms in n variables and the association scheme Sym(n, q) of symmetric bilinear forms in n variables over the finite field Fq are discussed by Wang et al. [Association schemes of quadratic forms and symmetric bilinear forms, J. Algebraic Combin. 17 (2003) 149–161]. In this paper, eigenvalues of Qua(n, q) are computed, ...

متن کامل

Witt rings of quadratically presentable fields

This paper introduces an approach to the axiomatic theory of quadratic forms based on {tmem{presentable}} partially ordered sets, that is partially ordered sets subject to additional conditions which amount to a strong form of local presentability. It turns out that the classical notion of the Witt ring of symmetric bilinear forms over a field makes sense in the context of {tmem{quadratically p...

متن کامل

Quadratic and symmetric bilinear forms over finite fields and their association schemes

Let $\mathscr{Q}(m,q)$ and $\mathscr{S}(m,q)$ be the sets of quadratic forms and symmetric bilinear forms on an $m$-dimensional vector space over $\mathbb{F}_q$, respectively. The orbits of $\mathscr{Q}(m,q)$ and $\mathscr{S}(m,q)$ under a natural group action induce two translation association schemes, which are known to be dual to each other. We give explicit expressions for the eigenvalues o...

متن کامل

Quadratic and Symmetric Bilinear Compositions of Quadratic Forms over Commutative Rings

Over commutative rings in which 2 is a zero-divisor, to compose a quadratic form with symmetric bilinear forms or with quadratic forms is not quite the same. In this paper the relation between the two classes of compositions is clarified and the results applied to find the ranks of minimal compositions.

متن کامل

Symmetric multilinear forms and polarization of polynomials

We study a generalization of the classical correspondence between homogeneous quadratic polynomials, quadratic forms, and symmetric/alternating bilinear forms to forms in n variables. The main tool is combinatorial polarization, and the approach is applicable even when n! is not invertible in the underlying field.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003